Module rgsl::debye
[−]
[src]
The Debye functions D_n(x) are defined by the following integral,
D_n(x) = n/xn \int_0x dt (tn/(et - 1))
For further information see Abramowitz & Stegun, Section 27.1.
Functions
| _1 |
This routine computes the first-order Debye function D_1(x) = (1/x) \int_0x dt (t/(et - 1)). |
| _1_e |
This routine computes the first-order Debye function D_1(x) = (1/x) \int_0x dt (t/(et - 1)). |
| _2 |
This routine computes the second-order Debye function D_2(x) = (2/x2) \int_0x dt (t2/(et - 1)). |
| _2_e |
This routine computes the second-order Debye function D_2(x) = (2/x2) \int_0x dt (t2/(et - 1)). |
| _3 |
This routine computes the third-order Debye function D_3(x) = (3/x3) \int_0x dt (t3/(et - 1)). |
| _3_e |
This routine computes the third-order Debye function D_3(x) = (3/x3) \int_0x dt (t3/(et - 1)). |
| _4 |
This routine computes the fourth-order Debye function D_4(x) = (4/x4) \int_0x dt (t4/(et - 1)). |
| _4_e |
This routine computes the fourth-order Debye function D_4(x) = (4/x4) \int_0x dt (t4/(et - 1)). |
| _5 |
This routine computes the fifth-order Debye function D_5(x) = (5/x5) \int_0x dt (t5/(et - 1)). |
| _5_e |
This routine computes the fifth-order Debye function D_5(x) = (5/x5) \int_0x dt (t5/(et - 1)). |
| _6 |
This routine computes the sixth-order Debye function D_6(x) = (6/x6) \int_0x dt (t6/(et - 1)). |
| _6_e |
This routine computes the sixth-order Debye function D_6(x) = (6/x6) \int_0x dt (t6/(et - 1)). |