Module rgsl::error
[−]
[src]
The error function is described in Abramowitz & Stegun, Chapter 7.
Functions
| erf |
This routine computes the error function erf(x), where erf(x) = (2/\sqrt(\pi)) \int_0x dt \exp(-t2). |
| erf_Q |
This routine computes the upper tail of the Gaussian probability function Q(x) = (1/\sqrt{2\pi}) \int_x\infty dt \exp(-t2/2). |
| erf_Q_e |
This routine computes the upper tail of the Gaussian probability function Q(x) = (1/\sqrt{2\pi}) \int_x\infty dt \exp(-t2/2). |
| erf_Z |
This routine computes the Gaussian probability density function Z(x) = (1/\sqrt{2\pi}) \exp(-x2/2). |
| erf_Z_e |
This routine computes the Gaussian probability density function Z(x) = (1/\sqrt{2\pi}) \exp(-x2/2). |
| erf_e |
This routine computes the error function erf(x), where erf(x) = (2/\sqrt(\pi)) \int_0x dt \exp(-t2). |
| erfc |
This routine computes the complementary error function erfc(x) = 1 - erf(x) = (2/\sqrt(\pi)) \int_x\infty \exp(-t2). |
| erfc_e |
This routine computes the complementary error function erfc(x) = 1 - erf(x) = (2/\sqrt(\pi)) \int_x\infty \exp(-t2). |
| hazard |
This routine computes the hazard function for the normal distribution. |
| hazard_e |
This routine computes the hazard function for the normal distribution. |
| log_erfc |
This routine computes the logarithm of the complementary error function \log(\erfc(x)). |
| log_erfc_e |
This routine computes the logarithm of the complementary error function \log(\erfc(x)). |
| str_error |