1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// // A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com) // use ffi; use types::Rng; /// This function returns a random integer from the binomial distribution, the number of successes in n independent trials with probability p. The probability distribution for binomial variates is, /// /// p(k) = {n! \over k! (n-k)! } p^k (1-p)^{n-k} /// /// for 0 <= k <= n. pub fn binomial(r: &Rng, p: f64, n: u32) -> u32 { unsafe { ffi::gsl_ran_binomial(ffi::FFI::unwrap(r), p, n) } } /// This function computes the probability p(k) of obtaining k from a binomial distribution with parameters p and n, using the formula given above. pub fn binomial_pdf(k: u32, p: f64, n: u32) -> f64 { unsafe { ffi::gsl_ran_binomial_pdf(k, p, n) } } /// This function computes the cumulative distribution functions P(k), Q(k) for the binomial distribution with parameters p and n. pub fn binomial_P(k: u32, p: f64, n: u32) -> f64 { unsafe { ffi::gsl_cdf_binomial_P(k, p, n) } } /// This function computes the cumulative distribution functions P(k), Q(k) for the binomial distribution with parameters p and n. pub fn binomial_Q(k: u32, p: f64, n: u32) -> f64 { unsafe { ffi::gsl_cdf_binomial_Q(k, p, n) } }