1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// // A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com) // use ffi; use types::Rng; /// This function provides random variates from the upper tail of a Gaussian distribution with standard deviation sigma. /// The values returned are larger than the lower limit a, which must be positive. The method is based on Marsaglia’s famous rectangle-wedge-tail algorithm (Ann. Math. Stat. 32, 894–899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139,586 (exercise 11). /// /// The probability distribution for Gaussian tail random variates is, /// /// p(x) dx = {1 \over N(a;\sigma) \sqrt{2 \pi \sigma^2}} \exp (- x^2/(2 \sigma^2)) dx /// /// for x > a where N(a;\sigma) is the normalization constant, /// /// N(a;\sigma) = (1/2) erfc(a / sqrt(2 sigma^2)). pub fn gaussian_tail(r: &Rng, a: f64, sigma: f64) -> f64 { unsafe { ffi::gsl_ran_gaussian_tail(ffi::FFI::unwrap(r), a, sigma) } } /// This function computes the probability density p(x) at x for a Gaussian tail distribution with standard deviation sigma and lower limit a, using the formula given above. pub fn gaussian_tail_pdf(x: f64, a: f64, sigma: f64) -> f64 { unsafe { ffi::gsl_ran_gaussian_tail_pdf(x, a, sigma) } } /// This function computes results for the tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, sigma = 1. pub fn ugaussian_tail(r: &Rng, a: f64) -> f64 { unsafe { ffi::gsl_ran_ugaussian_tail(ffi::FFI::unwrap(r), a) } } /// This function computes results for the tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, sigma = 1. pub fn ugaussian_tail_pdf(x: f64, a: f64) -> f64 { unsafe { ffi::gsl_ran_ugaussian_tail_pdf(x, a) } }