1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
// // A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com) // // TODO : port to Rust type : http://doc.rust-lang.org/num/complex/struct.Complex.html use std::fmt::{Formatter, Debug}; use std::fmt; use std::default::Default; #[repr(C)] #[derive(Copy)] pub struct ComplexF64 { pub data: [f64; 2] } impl ComplexF64 { /// This function uses the rectangular Cartesian components (x,y) to return the complex number z = x + i y. pub fn rect(x: f64, y: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_rect(x, y)) } } /// This function returns the complex number z = r \exp(i \theta) = r (\cos(\theta) + i \sin(\theta)) from the polar representation (r,theta). pub fn polar(r: f64, theta: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_polar(r, theta)) } } /// This function returns the argument of the complex number z, \arg(z), where -\pi < \arg(z) <= \pi. pub fn arg(&self) -> f64 { unsafe { ::ffi::gsl_complex_arg(::std::mem::transmute(self.data)) } } /// This function returns the magnitude of the complex number z, |z|. pub fn abs(&self) -> f64 { unsafe { ::ffi::gsl_complex_abs(::std::mem::transmute(self.data)) } } /// This function returns the squared magnitude of the complex number z, |z|^2. pub fn abs2(&self) -> f64 { unsafe { ::ffi::gsl_complex_abs2(::std::mem::transmute(self.data)) } } /// This function returns the natural logarithm of the magnitude of the complex number z, \log|z|. /// It allows an accurate evaluation of \log|z| when |z| is close to one. /// The direct evaluation of log(gsl_complex_abs(z)) would lead to a loss of precision in this case. pub fn logabs(&self) -> f64 { unsafe { ::ffi::gsl_complex_logabs(::std::mem::transmute(self.data)) } } /// This function returns the sum of the complex numbers a and b, z=a+b. pub fn add(&self, other: &ComplexF64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_add(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the difference of the complex numbers a and b, z=a-b. pub fn sub(&self, other: &ComplexF64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sub(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the product of the complex numbers a and b, z=ab. pub fn mul(&self, other: &ComplexF64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_mul(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the quotient of the complex numbers a and b, z=a/b. pub fn div(&self, other: &ComplexF64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_div(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the sum of the complex number a and the real number x, z=a+x. pub fn add_real(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_add_real(::std::mem::transmute(self.data), x)) } } /// This function returns the difference of the complex number a and the real number x, z=a-x. pub fn sub_real(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sub_real(::std::mem::transmute(self.data), x)) } } /// This function returns the product of the complex number a and the real number x, z=ax. pub fn mul_real(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_mul_real(::std::mem::transmute(self.data), x)) } } /// This function returns the quotient of the complex number a and the real number x, z=a/x. pub fn div_real(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_div_real(::std::mem::transmute(self.data), x)) } } /// This function returns the sum of the complex number a and the imaginary number iy, z=a+iy. pub fn add_imag(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_add_imag(::std::mem::transmute(self.data), x)) } } /// This function returns the difference of the complex number a and the imaginary number iy, z=a-iy. pub fn sub_imag(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sub_imag(::std::mem::transmute(self.data), x)) } } /// This function returns the product of the complex number a and the imaginary number iy, z=a*(iy). pub fn mul_imag(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_mul_imag(::std::mem::transmute(self.data), x)) } } /// This function returns the quotient of the complex number a and the imaginary number iy, z=a/(iy). pub fn div_imag(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_div_imag(::std::mem::transmute(self.data), x)) } } /// This function returns the complex conjugate of the complex number z, z^* = x - i y. pub fn conjugate(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_conjugate(::std::mem::transmute(self.data))) } } /// This function returns the inverse, or reciprocal, of the complex number z, 1/z = (x - i y)/(x^2 + y^2). pub fn inverse(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_inverse(::std::mem::transmute(self.data))) } } /// This function returns the negative of the complex number z, -z = (-x) + i(-y). pub fn negative(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_negative(::std::mem::transmute(self.data))) } } /// This function returns the square root of the complex number z, \sqrt z. /// The branch cut is the negative real axis. The result always lies in the right half of the complex plane. pub fn sqrt(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sqrt(::std::mem::transmute(self.data))) } } /// This function returns the complex square root of the real number x, where x may be negative. pub fn sqrt_real(x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sqrt_real(x)) } } /// The function returns the complex number z raised to the complex power a, z^a. /// This is computed as \exp(\log(z)*a) using complex logarithms and complex exponentials. pub fn pow(&self, other: &ComplexF64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_pow(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the complex number z raised to the real power x, z^x. pub fn pow_real(&self, x: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_pow_real(::std::mem::transmute(self.data), x)) } } /// This function returns the complex exponential of the complex number z, \exp(z). pub fn exp(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_exp(::std::mem::transmute(self.data))) } } /// This function returns the complex natural logarithm (base e) of the complex number z, \log(z). /// The branch cut is the negative real axis. pub fn log(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_log(::std::mem::transmute(self.data))) } } /// This function returns the complex base-10 logarithm of the complex number z, \log_10 (z). pub fn log10(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_log10(::std::mem::transmute(self.data))) } } /// This function returns the complex base-b logarithm of the complex number z, \log_b(z). /// This quantity is computed as the ratio \log(z)/\log(b). pub fn log_b(&self, other: &ComplexF64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_log_b(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the complex sine of the complex number z, \sin(z) = (\exp(iz) - \exp(-iz))/(2i). pub fn sin(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sin(::std::mem::transmute(self.data))) } } /// This function returns the complex cosine of the complex number z, \cos(z) = (\exp(iz) + \exp(-iz))/2. pub fn cos(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_cos(::std::mem::transmute(self.data))) } } /// This function returns the complex tangent of the complex number z, \tan(z) = \sin(z)/\cos(z). pub fn tan(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_tan(::std::mem::transmute(self.data))) } } /// This function returns the complex secant of the complex number z, \sec(z) = 1/\cos(z). pub fn sec(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sec(::std::mem::transmute(self.data))) } } /// This function returns the complex cosecant of the complex number z, \csc(z) = 1/\sin(z). pub fn csc(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_csc(::std::mem::transmute(self.data))) } } /// This function returns the complex cotangent of the complex number z, \cot(z) = 1/\tan(z). pub fn cot(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_cot(::std::mem::transmute(self.data))) } } /// This function returns the complex arcsine of the complex number z, \arcsin(z). /// The branch cuts are on the real axis, less than -1 and greater than 1. pub fn arcsin(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arcsin(::std::mem::transmute(self.data))) } } /// This function returns the complex arcsine of the real number z, \arcsin(z). /// /// * For z between -1 and 1, the function returns a real value in the range [-\pi/2,\pi/2]. /// * For z less than -1 the result has a real part of -\pi/2 and a positive imaginary part. /// * For z greater than 1 the result has a real part of \pi/2 and a negative imaginary part. pub fn arcsin_real(z: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arcsin_real(z)) } } /// This function returns the complex arccosine of the complex number z, \arccos(z). /// The branch cuts are on the real axis, less than -1 and greater than 1. pub fn arccos(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccos(::std::mem::transmute(self.data))) } } /// This function returns the complex arccosine of the real number z, \arccos(z). /// /// * For z between -1 and 1, the function returns a real value in the range [0,\pi]. /// * For z less than -1 the result has a real part of \pi and a negative imaginary part. /// * For z greater than 1 the result is purely imaginary and positive. pub fn arccos_real(z: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccos_real(z)) } } /// This function returns the complex arctangent of the complex number z, \arctan(z). /// The branch cuts are on the imaginary axis, below -i and above i. pub fn arctan(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arctan(::std::mem::transmute(self.data))) } } /// This function returns the complex arcsecant of the complex number z, \arcsec(z) = \arccos(1/z). pub fn arcsec(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arcsec(::std::mem::transmute(self.data))) } } /// This function returns the complex arcsecant of the real number z, \arcsec(z) = \arccos(1/z). pub fn arcsec_real(z: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arcsec_real(z)) } } /// This function returns the complex arccosecant of the complex number z, \arccsc(z) = \arcsin(1/z). pub fn arccsc(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccsc(::std::mem::transmute(self.data))) } } /// This function returns the complex arccosecant of the real number z, \arccsc(z) = \arcsin(1/z). pub fn arccsc_real(z: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccsc_real(z)) } } /// This function returns the complex arccotangent of the complex number z, \arccot(z) = \arctan(1/z). pub fn arccot(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccot(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic sine of the complex number z, \sinh(z) = (\exp(z) - \exp(-z))/2. pub fn sinh(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sinh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic cosine of the complex number z, \cosh(z) = (\exp(z) + \exp(-z))/2. pub fn cosh(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_cosh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic tangent of the complex number z, \tanh(z) = \sinh(z)/\cosh(z). pub fn tanh(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_tanh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic secant of the complex number z, \sech(z) = 1/\cosh(z). pub fn sech(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_sech(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic cosecant of the complex number z, \csch(z) = 1/\sinh(z). pub fn csch(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_csch(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic cotangent of the complex number z, \coth(z) = 1/\tanh(z). pub fn coth(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_coth(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arcsine of the complex number z, \arcsinh(z). /// The branch cuts are on the imaginary axis, below -i and above i. pub fn arcsinh(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arcsinh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arccosine of the complex number z, \arccosh(z). /// The branch cut is on the real axis, less than 1. /// Note that in this case we use the negative square root in formula 4.6.21 of Abramowitz & Stegun giving \arccosh(z)=\log(z-\sqrt{z^2-1}). pub fn arccosh(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccosh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arccosine of the real number z, \arccosh(z). pub fn arccosh_real(z: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccosh_real(z)) } } /// This function returns the complex hyperbolic arctangent of the complex number z, \arctanh(z). /// The branch cuts are on the real axis, less than -1 and greater than 1. pub fn arctanh(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arctanh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arctangent of the real number z, \arctanh(z). pub fn arctanh_real(z: f64) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arctanh_real(z)) } } /// This function returns the complex hyperbolic arcsecant of the complex number z, \arcsech(z) = \arccosh(1/z). pub fn arcsech(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arcsech(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arccosecant of the complex number z, \arccsch(z) = \arcsin(1/z). pub fn arccsch(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccsch(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arccotangent of the complex number z, \arccoth(z) = \arctanh(1/z). pub fn arccoth(&self) -> ComplexF64 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_arccoth(::std::mem::transmute(self.data))) } } } impl Debug for ComplexF64 { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "[{}, {}]", self.data[0], self.data[1]) } } impl Clone for ComplexF64 { fn clone(&self) -> ComplexF64 { ComplexF64 { data: [self.data[0], self.data[1]] } } } impl Default for ComplexF64 { fn default() -> ComplexF64 { ComplexF64 { data: [0f64, 0f64] } } } #[repr(C)] #[derive(Copy)] pub struct ComplexF32 { pub data: [f32; 2] } // I'll implement it in Rust directly /*impl ComplexF32 { /// This function returns the argument of the complex number z, \arg(z), where -\pi < \arg(z) <= \pi. pub fn arg(&self) -> f32 { unsafe { ::ffi::gsl_complex_float_arg(::std::mem::transmute(self.data)) } } /// This function returns the magnitude of the complex number z, |z|. pub fn abs(&self) -> f32 { unsafe { ::ffi::gsl_complex_float_abs(::std::mem::transmute(self.data)) } } /// This function returns the squared magnitude of the complex number z, |z|^2. pub fn abs2(&self) -> f32 { unsafe { ::ffi::gsl_complex_float_abs2(::std::mem::transmute(self.data)) } } /// This function returns the natural logarithm of the magnitude of the complex number z, \log|z|. /// It allows an accurate evaluation of \log|z| when |z| is close to one. /// The direct evaluation of log(gsl_complex_float_abs(z)) would lead to a loss of precision in this case. pub fn logabs(&self) -> f32 { unsafe { ::ffi::gsl_complex_float_logabs(::std::mem::transmute(self.data)) } } /// This function returns the sum of the complex numbers a and b, z=a+b. pub fn add(&self, other: &ComplexF32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_add(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the difference of the complex numbers a and b, z=a-b. pub fn sub(&self, other: &ComplexF32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sub(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the product of the complex numbers a and b, z=ab. pub fn mul(&self, other: &ComplexF32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_mul(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the quotient of the complex numbers a and b, z=a/b. pub fn div(&self, other: &ComplexF32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_div(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the sum of the complex number a and the real number x, z=a+x. pub fn add_real(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_add_real(::std::mem::transmute(self.data), x)) } } /// This function returns the difference of the complex number a and the real number x, z=a-x. pub fn sub_real(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sub_real(::std::mem::transmute(self.data), x)) } } /// This function returns the product of the complex number a and the real number x, z=ax. pub fn mul_real(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_mul_real(::std::mem::transmute(self.data), x)) } } /// This function returns the quotient of the complex number a and the real number x, z=a/x. pub fn div_real(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_div_real(::std::mem::transmute(self.data), x)) } } /// This function returns the sum of the complex number a and the imaginary number iy, z=a+iy. pub fn add_imag(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_add_imag(::std::mem::transmute(self.data), x)) } } /// This function returns the difference of the complex number a and the imaginary number iy, z=a-iy. pub fn sub_imag(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sub_imag(::std::mem::transmute(self.data), x)) } } /// This function returns the product of the complex number a and the imaginary number iy, z=a*(iy). pub fn mul_imag(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_mul_imag(::std::mem::transmute(self.data), x)) } } /// This function returns the quotient of the complex number a and the imaginary number iy, z=a/(iy). pub fn div_imag(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_div_imag(::std::mem::transmute(self.data), x)) } } /// This function returns the complex conjugate of the complex number z, z^* = x - i y. pub fn conjugate(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_conjugate(::std::mem::transmute(self.data))) } } /// This function returns the inverse, or reciprocal, of the complex number z, 1/z = (x - i y)/(x^2 + y^2). pub fn inverse(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_inverse(::std::mem::transmute(self.data))) } } /// This function returns the negative of the complex number z, -z = (-x) + i(-y). pub fn negative(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_negative(::std::mem::transmute(self.data))) } } /// This function returns the square root of the complex number z, \sqrt z. /// The branch cut is the negative real axis. The result always lies in the right half of the complex plane. pub fn sqrt(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sqrt(::std::mem::transmute(self.data))) } } /// This function returns the complex square root of the real number x, where x may be negative. pub fn sqrt_real(x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sqrt_real(x)) } } /// The function returns the complex number z raised to the complex power a, z^a. /// This is computed as \exp(\log(z)*a) using complex logarithms and complex exponentials. pub fn pow(&self, other: &ComplexF32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_pow(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the complex number z raised to the real power x, z^x. pub fn pow_real(&self, x: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_pow_real(::std::mem::transmute(self.data), x)) } } /// This function returns the complex exponential of the complex number z, \exp(z). pub fn exp(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_exp(::std::mem::transmute(self.data))) } } /// This function returns the complex natural logarithm (base e) of the complex number z, \log(z). /// The branch cut is the negative real axis. pub fn log(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_log(::std::mem::transmute(self.data))) } } /// This function returns the complex base-10 logarithm of the complex number z, \log_10 (z). pub fn log10(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_log10(::std::mem::transmute(self.data))) } } /// This function returns the complex base-b logarithm of the complex number z, \log_b(z). /// This quantity is computed as the ratio \log(z)/\log(b). pub fn log_b(&self, other: &ComplexF32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_log_b(::std::mem::transmute(self.data), ::std::mem::transmute(other.data))) } } /// This function returns the complex sine of the complex number z, \sin(z) = (\exp(iz) - \exp(-iz))/(2i). pub fn sin(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sin(::std::mem::transmute(self.data))) } } /// This function returns the complex cosine of the complex number z, \cos(z) = (\exp(iz) + \exp(-iz))/2. pub fn cos(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_cos(::std::mem::transmute(self.data))) } } /// This function returns the complex tangent of the complex number z, \tan(z) = \sin(z)/\cos(z). pub fn tan(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_tan(::std::mem::transmute(self.data))) } } /// This function returns the complex secant of the complex number z, \sec(z) = 1/\cos(z). pub fn sec(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sec(::std::mem::transmute(self.data))) } } /// This function returns the complex cosecant of the complex number z, \csc(z) = 1/\sin(z). pub fn csc(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_csc(::std::mem::transmute(self.data))) } } /// This function returns the complex cotangent of the complex number z, \cot(z) = 1/\tan(z). pub fn cot(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_cot(::std::mem::transmute(self.data))) } } /// This function returns the complex arcsine of the complex number z, \arcsin(z). /// The branch cuts are on the real axis, less than -1 and greater than 1. pub fn arcsin(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arcsin(::std::mem::transmute(self.data))) } } /// This function returns the complex arcsine of the real number z, \arcsin(z). /// /// * For z between -1 and 1, the function returns a real value in the range [-\pi/2,\pi/2]. /// * For z less than -1 the result has a real part of -\pi/2 and a positive imaginary part. /// * For z greater than 1 the result has a real part of \pi/2 and a negative imaginary part. pub fn arcsin_real(z: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arcsin_real(z)) } } /// This function returns the complex arccosine of the complex number z, \arccos(z). /// The branch cuts are on the real axis, less than -1 and greater than 1. pub fn arccos(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccos(::std::mem::transmute(self.data))) } } /// This function returns the complex arccosine of the real number z, \arccos(z). /// /// * For z between -1 and 1, the function returns a real value in the range [0,\pi]. /// * For z less than -1 the result has a real part of \pi and a negative imaginary part. /// * For z greater than 1 the result is purely imaginary and positive. pub fn arccos_real(z: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccos_real(z)) } } /// This function returns the complex arctangent of the complex number z, \arctan(z). /// The branch cuts are on the imaginary axis, below -i and above i. pub fn arctan(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arctan(::std::mem::transmute(self.data))) } } /// This function returns the complex arcsecant of the complex number z, \arcsec(z) = \arccos(1/z). pub fn arcsec(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arcsec(::std::mem::transmute(self.data))) } } /// This function returns the complex arcsecant of the real number z, \arcsec(z) = \arccos(1/z). pub fn arcsec_real(z: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arcsec_real(z)) } } /// This function returns the complex arccosecant of the complex number z, \arccsc(z) = \arcsin(1/z). pub fn arccsc(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccsc(::std::mem::transmute(self.data))) } } /// This function returns the complex arccosecant of the real number z, \arccsc(z) = \arcsin(1/z). pub fn arccsc_real(z: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccsc_real(z)) } } /// This function returns the complex arccotangent of the complex number z, \arccot(z) = \arctan(1/z). pub fn arccot(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccot(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic sine of the complex number z, \sinh(z) = (\exp(z) - \exp(-z))/2. pub fn sinh(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sinh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic cosine of the complex number z, \cosh(z) = (\exp(z) + \exp(-z))/2. pub fn cosh(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_cosh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic tangent of the complex number z, \tanh(z) = \sinh(z)/\cosh(z). pub fn tanh(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_tanh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic secant of the complex number z, \sech(z) = 1/\cosh(z). pub fn sech(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_sech(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic cosecant of the complex number z, \csch(z) = 1/\sinh(z). pub fn csch(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_csch(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic cotangent of the complex number z, \coth(z) = 1/\tanh(z). pub fn coth(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_coth(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arcsine of the complex number z, \arcsinh(z). /// The branch cuts are on the imaginary axis, below -i and above i. pub fn arcsinh(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arcsinh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arccosine of the complex number z, \arccosh(z). /// The branch cut is on the real axis, less than 1. /// Note that in this case we use the negative square root in formula 4.6.21 of Abramowitz & Stegun giving \arccosh(z)=\log(z-\sqrt{z^2-1}). pub fn arccosh(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccosh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arccosine of the real number z, \arccosh(z). pub fn arccosh_real(z: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccosh_real(z)) } } /// This function returns the complex hyperbolic arctangent of the complex number z, \arctanh(z). /// The branch cuts are on the real axis, less than -1 and greater than 1. pub fn arctanh(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arctanh(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arctangent of the real number z, \arctanh(z). pub fn arctanh_real(z: f32) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arctanh_real(z)) } } /// This function returns the complex hyperbolic arcsecant of the complex number z, \arcsech(z) = \arccosh(1/z). pub fn arcsech(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arcsech(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arccosecant of the complex number z, \arccsch(z) = \arcsin(1/z). pub fn arccsch(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccsch(::std::mem::transmute(self.data))) } } /// This function returns the complex hyperbolic arccotangent of the complex number z, \arccoth(z) = \arctanh(1/z). pub fn arccoth(&self) -> ComplexF32 { unsafe { ::std::mem::transmute(::ffi::gsl_complex_float_arccoth(::std::mem::transmute(self.data))) } } }*/ impl Debug for ComplexF32 { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "[{}, {}]", self.data[0], self.data[1]) } } impl Clone for ComplexF32 { fn clone(&self) -> ComplexF32 { ComplexF32 { data: [self.data[0], self.data[1]] } } } impl Default for ComplexF32 { fn default() -> ComplexF32 { ComplexF32 { data: [0f32, 0f32] } } }