1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
// // A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com) // /*! #Multisets This chapter describes functions for creating and manipulating multisets. A multiset c is represented by an array of k integers in the range 0 to n-1, where each value c_i may occur more than once. The multiset c corresponds to indices of k elements chosen from an n element vector with replacement. In mathematical terms, n is the cardinality of the multiset while k is the maximum multiplicity of any value. Multisets are useful, for example, when iterating over the indices of a k-th order symmetric tensor in n-space. !*/ use ffi; use enums; use std::io::Result as IoResult; use c_vec::CSlice; use std::io::Write; pub struct MultiSet { c: *mut ffi::gsl_multiset, data: CSlice<usize> } impl MultiSet { /// This function allocates memory for a new multiset with parameters n, k. The multiset is not initialized and its elements are /// undefined. Use the function gsl_multiset_calloc if you want to create a multiset which is initialized to the lexicographically /// first multiset element. A null pointer is returned if insufficient memory is available to create the multiset. pub fn new(n: usize, k: usize) -> Option<MultiSet> { let tmp = unsafe { ffi::gsl_multiset_alloc(n, k) }; if tmp.is_null() { None } else { unsafe { if (*tmp).data.is_null() { Some(MultiSet { c: tmp, // dirty trick to avoid a failure data: CSlice::new(tmp as *mut usize, 0usize) }) } else { Some(MultiSet { c: tmp, data: CSlice::new((*tmp).data, (*tmp).k as usize) }) } } } } /// This function allocates memory for a new multiset with parameters n, k and initializes it to the lexicographically first multiset /// element. A null pointer is returned if insufficient memory is available to create the multiset. pub fn new_init(n: usize, k: usize) -> Option<MultiSet> { let tmp = unsafe { ffi::gsl_multiset_calloc(n, k) }; if tmp.is_null() { None } else { unsafe { if (*tmp).data.is_null() { Some(MultiSet { c: tmp, // dirty trick to avoid a failure data: CSlice::new(tmp as *mut usize, 0usize) }) } else { Some(MultiSet { c: tmp, data: CSlice::new((*tmp).data, (*tmp).k as usize) }) } } } } /// This function initializes the multiset c to the lexicographically first multiset element, i.e. 0 repeated k times. pub fn init_first(&self) { unsafe { ffi::gsl_multiset_init_first(self.c) } } /// This function initializes the multiset c to the lexicographically last multiset element, i.e. n-1 repeated k times. pub fn init_last(&self) { unsafe { ffi::gsl_multiset_init_last(self.c) } } /// This function copies the elements of the multiset self into the multiset dest. The two multisets must have the same size. pub fn copy(&self, dest: &MultiSet) -> enums::Value { unsafe { ffi::gsl_multiset_memcpy(dest.c, self.c) } } /// This function returns the value of the i-th element of the multiset c. If i lies outside the allowed range of 0 to k-1 then the /// error handler is invoked and 0 is returned. pub fn get(&self, i: usize) -> usize { unsafe { ffi::gsl_multiset_get(self.c, i) } } /// This function returns the range (n) of the multiset self. pub fn n(&self) -> usize { unsafe { ffi::gsl_multiset_n(self.c) } } /// This function returns the number of elements (k) in the multiset self. pub fn k(&self) -> usize { unsafe { ffi::gsl_multiset_k(self.c) } } /// This function returns a pointer to the array of elements in the multiset self. pub fn data<'r>(&'r mut self) -> &'r mut [usize] { self.data.as_mut() } /// This function checks that the multiset self is valid. The k elements should lie in the range 0 to n-1, with each value occurring in /// nondecreasing order. pub fn valid(&self) -> enums::Value { unsafe { ffi::gsl_multiset_valid(self.c) } } /// This function advances the multiset self to the next multiset element in lexicographic order and returns ::Value::Success. If no /// further multisets elements are available it returns enums::value::Failure and leaves self unmodified. Starting with the first multiset and /// repeatedly applying this function will iterate through all possible multisets of a given order. pub fn next(&self) -> enums::Value { unsafe { ffi::gsl_multiset_next(self.c) } } /// This function steps backwards from the multiset self to the previous multiset element in lexicographic order, returning ::Value::Success. /// If no previous multiset is available it returns enums::value::Failure and leaves self unmodified. pub fn prev(&self) -> enums::Value { unsafe { ffi::gsl_multiset_prev(self.c) } } pub fn print(&self, writer: &mut Write) -> IoResult<()> { for value in self.data.as_ref().iter() { match write!(writer, " {}", *value) { Ok(_) => {}, Err(e) => return Err(e), } } Ok(()) } } impl Drop for MultiSet { fn drop(&mut self) { unsafe { ffi::gsl_multiset_free(self.c) }; self.c = ::std::ptr::null_mut(); } } impl ffi::FFI<ffi::gsl_multiset> for MultiSet { fn wrap(c: *mut ffi::gsl_multiset) -> MultiSet { unsafe { if (*c).data.is_null() { MultiSet { c: c, // dirty trick to avoid a failure data: CSlice::new(c as *mut usize, 0usize) } } else { MultiSet { c: c, data: CSlice::new((*c).data, (*c).k as usize) } } } } fn unwrap(c: &MultiSet) -> *mut ffi::gsl_multiset { c.c } }