1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
// // A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com) // use types::{VectorF64}; use ffi; use enums; use std::fmt; use std::fmt::{Formatter, Debug}; use c_vec::CSlice; pub struct Permutation { p: *mut ffi::gsl_permutation, d: CSlice<usize> } ///##Permutations in cyclic form /// /// A permutation can be represented in both linear and cyclic notations. The functions described in this section convert between the two forms. /// The linear notation is an index mapping, and has already been described above. The cyclic notation expresses a permutation as a series of /// circular rearrangements of groups of elements, or cycles. /// /// For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different /// sets of elements can be combined independently, for example (1 2 3) (4 5) combines the cycle (1 2 3) with the cycle (4 5), which is an exchange /// of elements 4 and 5. A cycle of length one represents an element which is unchanged by the permutation and is referred to as a singleton. /// /// It can be shown that every permutation can be decomposed into combinations of cycles. The decomposition is not unique, but can always be /// rearranged into a standard canonical form by a reordering of elements. The library uses the canonical form defined in Knuth’s Art of Computer /// Programming (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178. /// /// The procedure for obtaining the canonical form given by Knuth is, /// /// Write all singleton cycles explicitly /// Within each cycle, put the smallest number first /// Order the cycles in decreasing order of the first number in the cycle. /// For example, the linear representation (2 4 3 0 1) is represented as (1 4) (0 2 3) in canonical form. The permutation corresponds to an exchange /// of elements 1 and 4, and rotation of elements 0, 2 and 3. /// /// The important property of the canonical form is that it can be reconstructed from the contents of each cycle without the brackets. In addition, /// by removing the brackets it can be considered as a linear representation of a different permutation. In the example given above the permutation /// (2 4 3 0 1) would become (1 4 0 2 3). This mapping has many applications in the theory of permutations. impl Permutation { /// This function allocates memory for a new permutation of size n. The permutation is not initialized and its elements are undefined. /// Use the function gsl_permutation_calloc if you want to create a permutation which is initialized to the identity. A null pointer is /// returned if insufficient memory is available to create the permutation. pub fn new(n: usize) -> Option<Permutation> { let tmp = unsafe { ffi::gsl_permutation_alloc(n) }; if tmp.is_null() { None } else { unsafe { Some(Permutation { p: tmp, d: CSlice::new((*tmp).data, (*tmp).size as usize) }) } } } /// This function allocates memory for a new permutation of size n and initializes it to the identity. A null pointer is returned if /// insufficient memory is available to create the permutation. pub fn new_with_init(n: usize) -> Option<Permutation> { let tmp = unsafe { ffi::gsl_permutation_calloc(n) }; if tmp.is_null() { None } else { unsafe { Some(Permutation { p: tmp, d: CSlice::new((*tmp).data, (*tmp).size as usize) }) } } } /// This function initializes the permutation p to the identity, i.e. (0,1,2,…,n-1). pub fn init(&self) { unsafe { ffi::gsl_permutation_init(self.p) } } /// This function copies the elements of the permutation src into the permutation dest. The two permutations must have the same size. pub fn copy(&self, dest: &Permutation) -> enums::Value { unsafe { ffi::gsl_permutation_memcpy(dest.p, self.p) } } /// This function returns the value of the i-th element of the permutation p. If i lies outside the allowed range of 0 to n-1 then /// the error handler is invoked and 0 is returned. pub fn get(&self, i: usize) -> usize { unsafe { ffi::gsl_permutation_get(self.p, i) } } /// This function exchanges the i-th and j-th elements of the permutation p. pub fn swap(&self, i: usize, j: usize) -> enums::Value { unsafe { ffi::gsl_permutation_swap(self.p, i, j) } } /// This function returns the size of the permutation p. pub fn size(&self) -> usize { unsafe { ffi::gsl_permutation_size(self.p) } } /// This function returns a pointer to the array of elements in the permutation p. pub fn data<'r>(&'r mut self) -> &'r mut [usize] { self.d.as_mut() } /// This function checks that the permutation p is valid. The n elements should contain each of the numbers 0 to n-1 once and only once. pub fn is_valid(&self) -> bool { match unsafe { ffi::gsl_permutation_valid(self.p) } { ::Value::Success => true, _ => false } } /// This function reverses the elements of the permutation p. pub fn reverse(&self) { unsafe { ffi::gsl_permutation_reverse(self.p) } } /// This function computes the inverse of the permutation p, storing the result in inv. pub fn inverse(&self, inv: &Permutation) -> enums::Value { unsafe { ffi::gsl_permutation_inverse(inv.p, self.p) } } /// This function advances the permutation p to the next permutation in lexicographic order and returns GSL_SUCCESS. If no further /// permutations are available it returns GSL_FAILURE and leaves p unmodified. Starting with the identity permutation and repeatedly /// applying this function will iterate through all possible permutations of a given order. pub fn next(&self) -> enums::Value { unsafe { ffi::gsl_permutation_next(self.p) } } /// This function steps backwards from the permutation p to the previous permutation in lexicographic order, returning GSL_SUCCESS. /// If no previous permutation is available it returns GSL_FAILURE and leaves p unmodified. pub fn prev(&self) -> enums::Value { unsafe { ffi::gsl_permutation_prev(self.p) } } /// This function applies the permutation to the array data of size n with stride stride. pub fn permute(&self, data: &mut [f64], stride: usize) -> enums::Value { unsafe { ffi::gsl_permute((*self.p).data, data.as_mut_ptr(), stride, data.len() as usize) } } /// This function applies the inverse of the permutation p to the array data of size n with stride stride. pub fn permute_inverse(&self, data: &mut [f64], stride: usize) -> enums::Value { unsafe { ffi::gsl_permute_inverse((*self.p).data, data.as_mut_ptr(), stride, data.len() as usize) } } /// This function applies the permutation p to the elements of the vector v, considered as a row-vector acted on by a permutation /// matrix from the right, v' = v P. The j-th column of the permutation matrix P is given by the p_j-th column of the identity matrix. /// The permutation p and the vector v must have the same length. pub fn permute_vector(&self, v: &VectorF64) -> enums::Value { unsafe { ffi::gsl_permute_vector(self.p, ffi::FFI::unwrap(v)) } } /// This function applies the inverse of the permutation p to the elements of the vector v, considered as a row-vector acted on by an inverse permutation /// matrix from the right, v' = v P^T. Note that for permutation matrices the inverse is the same as the transpose. The j-th column of the permutation /// matrix P is given by the p_j-th column of the identity matrix. The permutation p and the vector v must have the same length. pub fn permute_vector_inverse(&self, v: &VectorF64) -> enums::Value { unsafe { ffi::gsl_permute_vector_inverse(self.p, ffi::FFI::unwrap(v)) } } /// This function combines the two permutations pa and pb into a single permutation p, where p = pa * pb. The permutation p is equivalent to applying pb /// first and then pa. pub fn mul(&self, pa: &Permutation, pb: &Permutation) -> enums::Value { unsafe { ffi::gsl_permutation_mul(self.p, pa.p, pb.p) } } /// This function computes the canonical form of the permutation self and stores it in the output argument q. pub fn linear_to_canonical(&self, q: &Permutation) -> enums::Value { unsafe { ffi::gsl_permutation_linear_to_canonical(q.p, self.p) } } /// This function converts the self permutation in canonical form back into linear form storing it in the output argument p. pub fn canonical_to_linear(&self, p: &Permutation) -> enums::Value { unsafe { ffi::gsl_permutation_canonical_to_linear(p.p, self.p) } } /// This function counts the number of inversions in the self permutation. An inversion is any pair of elements that are not in order. For example, the /// permutation 2031 has three inversions, corresponding to the pairs (2,0) (2,1) and (3,1). The identity permutation has no inversions. pub fn inversions(&self) -> usize { unsafe { ffi::gsl_permutation_inversions(self.p) } } /// This function counts the number of cycles in the self permutation, given in linear form. pub fn linear_cycles(&self) -> usize { unsafe { ffi::gsl_permutation_linear_cycles(self.p) } } /// This function counts the number of cycles in the self permutation, given in canonical form. pub fn canonical_cycles(&self) -> usize { unsafe { ffi::gsl_permutation_canonical_cycles(self.p) } } } impl Drop for Permutation { fn drop(&mut self) { unsafe { ffi::gsl_permutation_free(self.p) }; self.p = ::std::ptr::null_mut(); } } impl ffi::FFI<ffi::gsl_permutation> for Permutation { fn wrap(p: *mut ffi::gsl_permutation) -> Permutation { unsafe { Permutation { p: p, d: CSlice::new((*p).data, (*p).size as usize) } } } fn unwrap(p: &Permutation) -> *mut ffi::gsl_permutation { p.p } } impl Debug for Permutation { #[allow(unused_must_use)] fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "["); unsafe { for x in 0usize..(*self.p).size { let tmp = (*self.p).data.offset(x as isize); write!(f, " {}", *tmp); } } write!(f, "]") } }