1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
use learning::error::{Error, ErrorKind};
use linalg::Matrix;
use super::Transformer;
use rulinalg::utils;
use libnum::Float;
#[derive(Debug)]
pub struct MinMaxScaler<T: Float> {
scale_factors: Option<Vec<T>>,
const_factors: Option<Vec<T>>,
scaled_min: T,
scaled_max: T,
}
impl<T: Float> Default for MinMaxScaler<T> {
fn default() -> MinMaxScaler<T> {
MinMaxScaler::new(T::zero(), T::one())
}
}
impl<T: Float> MinMaxScaler<T> {
pub fn new(min: T, max: T) -> MinMaxScaler<T> {
MinMaxScaler {
scale_factors: None,
const_factors: None,
scaled_min: min,
scaled_max: max,
}
}
}
impl<T: Float> Transformer<Matrix<T>> for MinMaxScaler<T> {
fn transform(&mut self, mut inputs: Matrix<T>) -> Result<Matrix<T>, Error> {
let features = inputs.cols();
let mut input_min_max = vec![(T::max_value(), T::min_value()); features];
for row in inputs.iter_rows() {
for (idx, (feature, min_max)) in row.into_iter().zip(input_min_max.iter_mut()).enumerate() {
if !feature.is_finite() {
return Err(Error::new(ErrorKind::InvalidData,
format!("Data point in column {} cannot be \
processed",
idx)));
}
if *feature < min_max.0 {
min_max.0 = *feature;
}
if *feature > min_max.1 {
min_max.1 = *feature;
}
}
}
let scales = try!(input_min_max.iter()
.map(|&(x, y)| {
let s = (self.scaled_max - self.scaled_min) / (y - x);
if s.is_finite() {
Ok(s)
} else {
Err(Error::new(ErrorKind::InvalidData,
"Constant feature columns not supported."))
}
})
.collect::<Result<Vec<_>, _>>());
let consts = input_min_max.iter()
.zip(scales.iter())
.map(|(&(_, x), &s)| self.scaled_max - x * s)
.collect::<Vec<_>>();
for row in inputs.iter_rows_mut() {
utils::in_place_vec_bin_op(row, &scales, |x, &y| {
*x = *x * y;
});
utils::in_place_vec_bin_op(row, &consts, |x, &y| {
*x = *x + y;
});
}
self.scale_factors = Some(scales);
self.const_factors = Some(consts);
Ok(inputs)
}
fn inv_transform(&self, mut inputs: Matrix<T>) -> Result<Matrix<T>, Error> {
if let (&Some(ref scales), &Some(ref consts)) = (&self.scale_factors, &self.const_factors) {
let features = scales.len();
if inputs.cols() != features {
return Err(Error::new(ErrorKind::InvalidData,
"Inputs have different feature count than transformer."));
}
for row in inputs.iter_rows_mut() {
for i in 0..features {
row[i] = (row[i] - consts[i]) / scales[i];
}
}
Ok(inputs)
} else {
Err(Error::new(ErrorKind::InvalidState, "Transformer has not been fitted."))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::Transformer;
use linalg::Matrix;
use std::f64;
#[test]
fn nan_data_test() {
let inputs = Matrix::new(2, 2, vec![f64::NAN; 4]);
let mut scaler = MinMaxScaler::new(0.0, 1.0);
let res = scaler.transform(inputs);
assert!(res.is_err());
}
#[test]
fn infinity_data_test() {
let inputs = Matrix::new(2, 2, vec![f64::INFINITY; 4]);
let mut scaler = MinMaxScaler::new(0.0, 1.0);
let res = scaler.transform(inputs);
assert!(res.is_err());
}
#[test]
fn basic_scale_test() {
let inputs = Matrix::new(2, 2, vec![-1.0f32, 2.0, 0.0, 3.0]);
let mut scaler = MinMaxScaler::new(0.0, 1.0);
let transformed = scaler.transform(inputs).unwrap();
assert!(transformed.data().iter().all(|&x| x >= 0.0));
assert!(transformed.data().iter().all(|&x| x <= 1.0));
transformed[[0, 0]].abs() < 1e-10;
transformed[[0, 1]].abs() < 1e-10;
(transformed[[1, 0]] - 1.0).abs() < 1e-10;
(transformed[[1, 1]] - 1.0).abs() < 1e-10;
}
#[test]
fn custom_scale_test() {
let inputs = Matrix::new(2, 2, vec![-1.0f32, 2.0, 0.0, 3.0]);
let mut scaler = MinMaxScaler::new(1.0, 3.0);
let transformed = scaler.transform(inputs).unwrap();
assert!(transformed.data().iter().all(|&x| x >= 1.0));
assert!(transformed.data().iter().all(|&x| x <= 3.0));
(transformed[[0, 0]] - 1.0).abs() < 1e-10;
(transformed[[0, 1]] - 1.0).abs() < 1e-10;
(transformed[[1, 0]] - 3.0).abs() < 1e-10;
(transformed[[1, 1]] - 3.0).abs() < 1e-10;
}
#[test]
fn constant_feature_test() {
let inputs = Matrix::new(2, 2, vec![1.0, 2.0, 1.0, 3.0]);
let mut scaler = MinMaxScaler::new(0.0, 1.0);
let res = scaler.transform(inputs);
assert!(res.is_err());
}
#[test]
fn inv_transform_identity_test() {
let inputs = Matrix::new(2, 2, vec![-1.0f32, 2.0, 0.0, 3.0]);
let mut scaler = MinMaxScaler::new(1.0, 3.0);
let transformed = scaler.transform(inputs.clone()).unwrap();
let original = scaler.inv_transform(transformed).unwrap();
assert!((inputs - original).data().iter().all(|x| x.abs() < 1e-5));
}
}