Struct bio::stats::probs::LogProb
[−]
pub struct LogProb(pub f64);
A newtype for log-scale probabilities.
Example
#[macro_use] extern crate approx; use bio::stats::{LogProb, Prob}; // convert from probability let p = LogProb::from(Prob(0.5)); // convert manually let q = LogProb(0.2f64.ln()); // obtain zero probability in log-space let o = LogProb::ln_one(); assert_relative_eq!(*Prob::from(p.ln_add_exp(q) + o), *Prob(0.7));
Methods
impl LogProb
[src]
fn ln_zero() -> LogProb
Log-space representation of Pr=0
fn ln_one() -> LogProb
Log-space representation of Pr=1
fn ln_one_minus_exp(&self) -> LogProb
Numerically stable calculation of 1 - p in log-space.
fn ln_sum_exp(probs: &[LogProb]) -> LogProb
Numerically stable sum of probabilities in log-space.
fn ln_add_exp(self, other: LogProb) -> LogProb
Numerically stable addition probabilities in log-space.
fn ln_sub_exp(self, other: LogProb) -> LogProb
Numerically stable subtraction of probabilities in log-space.
fn ln_cumsum_exp<I: IntoIterator<Item=LogProb>>(probs: I) -> ScanIter<I>
Calculate the cumulative sum of the given probabilities in a numerically stable way (Durbin 1998).
fn ln_trapezoidal_integrate_exp<T, D>(density: &D, a: T, b: T, n: usize) -> LogProb where T: Copy + Add<Output=T> + Sub<Output=T> + Div<Output=T> + Mul<Output=T>, D: Fn(T) -> LogProb, usize: ToFloat<T>, f64: From<T>
Integrate numerically stable over given log-space density in the interval [a, b]. Uses the trapezoidal rule with n grid points.
fn ln_simpsons_integrate_exp<T, D>(density: &D, a: T, b: T, n: usize) -> LogProb where T: Copy + Add<Output=T> + Sub<Output=T> + Div<Output=T> + Mul<Output=T>, D: Fn(T) -> LogProb, usize: ToFloat<T>, f64: From<T>
Integrate numerically stable over given log-space density in the interval [a, b]. Uses Simpson's rule with n (odd) grid points.
Methods from Deref<Target=f64>
fn is_nan(self) -> bool
1.0.0
Returns true
if this value is NaN
and false otherwise.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());
fn is_infinite(self) -> bool
1.0.0
Returns true
if this value is positive infinity or negative infinity and
false otherwise.
use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());
fn is_finite(self) -> bool
1.0.0
Returns true
if this number is neither infinite nor NaN
.
use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());
fn is_normal(self) -> bool
1.0.0
Returns true
if the number is neither zero, infinite,
subnormal, or NaN
.
use std::f64; let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 let max = f64::MAX; let lower_than_min = 1.0e-308_f64; let zero = 0.0f64; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f64::NAN.is_normal()); assert!(!f64::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());
fn classify(self) -> FpCategory
1.0.0
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);
fn integer_decode(self) -> (u64, i16, i8)
: never really came to fruition and easily implementable outside the standard library
float_extras
): never really came to fruition and easily implementable outside the standard library
Returns the mantissa, base 2 exponent, and sign as integers, respectively.
The original number can be recovered by sign * mantissa * 2 ^ exponent
.
The floating point encoding is documented in the Reference.
#![feature(float_extras)] let num = 2.0f64; // (8388608, -22, 1) let (mantissa, exponent, sign) = num.integer_decode(); let sign_f = sign as f64; let mantissa_f = mantissa as f64; let exponent_f = num.powf(exponent as f64); // 1 * 8388608 * 2^(-22) == 2 let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); assert!(abs_difference < 1e-10);
fn floor(self) -> f64
1.0.0
Returns the largest integer less than or equal to a number.
let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);
fn ceil(self) -> f64
1.0.0
Returns the smallest integer greater than or equal to a number.
let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);
fn round(self) -> f64
1.0.0
Returns the nearest integer to a number. Round half-way cases away from
0.0
.
let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);
fn trunc(self) -> f64
1.0.0
Returns the integer part of a number.
let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);
fn fract(self) -> f64
1.0.0
Returns the fractional part of a number.
let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
fn abs(self) -> f64
1.0.0
Computes the absolute value of self
. Returns NAN
if the
number is NAN
.
use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());
fn signum(self) -> f64
1.0.0
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());
fn is_sign_positive(self) -> bool
1.0.0
Returns true
if self
's sign bit is positive, including
+0.0
and INFINITY
.
use std::f64; let nan: f64 = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive()); // Requires both tests to determine if is `NaN` assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
fn is_positive(self) -> bool
1.0.0
: renamed to is_sign_positive
fn is_sign_negative(self) -> bool
1.0.0
Returns true
if self
's sign is negative, including -0.0
and NEG_INFINITY
.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative()); // Requires both tests to determine if is `NaN`. assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
fn is_negative(self) -> bool
1.0.0
: renamed to is_sign_negative
fn mul_add(self, a: f64, b: f64) -> f64
1.0.0
Fused multiply-add. Computes (self * a) + b
with only one rounding
error. This produces a more accurate result with better performance than
a separate multiplication operation followed by an add.
let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);
fn recip(self) -> f64
1.0.0
Takes the reciprocal (inverse) of a number, 1/x
.
let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);
fn powi(self, n: i32) -> f64
1.0.0
Raises a number to an integer power.
Using this function is generally faster than using powf
let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);
fn powf(self, n: f64) -> f64
1.0.0
Raises a number to a floating point power.
let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);
fn sqrt(self) -> f64
1.0.0
Takes the square root of a number.
Returns NaN if self
is a negative number.
let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());
fn exp(self) -> f64
1.0.0
Returns e^(self)
, (the exponential function).
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn exp2(self) -> f64
1.0.0
Returns 2^(self)
.
let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);
fn ln(self) -> f64
1.0.0
Returns the natural logarithm of the number.
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn log(self, base: f64) -> f64
1.0.0
Returns the logarithm of the number with respect to an arbitrary base.
let ten = 10.0_f64; let two = 2.0_f64; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 < 1e-10); assert!(abs_difference_2 < 1e-10);
fn log2(self) -> f64
1.0.0
Returns the base 2 logarithm of the number.
let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn log10(self) -> f64
1.0.0
Returns the base 10 logarithm of the number.
let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn to_degrees(self) -> f64
1.0.0
Converts radians to degrees.
use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);
fn to_radians(self) -> f64
1.0.0
Converts degrees to radians.
use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);
fn frexp(self) -> (f64, isize)
: never really came to fruition and easily implementable outside the standard library
float_extras
): never really came to fruition and easily implementable outside the standard library
Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
self = x * 2^exp
0.5 <= abs(x) < 1.0
#![feature(float_extras)] let x = 4.0_f64; // (1/2)*2^3 -> 1 * 8/2 -> 4.0 let f = x.frexp(); let abs_difference_0 = (f.0 - 0.5).abs(); let abs_difference_1 = (f.1 as f64 - 3.0).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);
fn next_after(self, other: f64) -> f64
: never really came to fruition and easily implementable outside the standard library
float_extras
): never really came to fruition and easily implementable outside the standard library
Returns the next representable floating-point value in the direction of
other
.
#![feature(float_extras)] let x = 1.0f64; let abs_diff = (x.next_after(2.0) - 1.0000000000000002220446049250313_f64).abs(); assert!(abs_diff < 1e-10);
fn max(self, other: f64) -> f64
1.0.0
Returns the maximum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);
If one of the arguments is NaN, then the other argument is returned.
fn min(self, other: f64) -> f64
1.0.0
Returns the minimum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);
If one of the arguments is NaN, then the other argument is returned.
fn abs_sub(self, other: f64) -> f64
1.0.0
: you probably meant (self - other).abs()
: this operation is (self - other).max(0.0)
(also known as fdim
in C). If you truly need the positive difference, consider using that expression or the C function fdim
, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other
:0:0
- Else:
self - other
let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
fn cbrt(self) -> f64
1.0.0
Takes the cubic root of a number.
let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);
fn hypot(self, other: f64) -> f64
1.0.0
Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
.
let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);
fn sin(self) -> f64
1.0.0
Computes the sine of a number (in radians).
use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn cos(self) -> f64
1.0.0
Computes the cosine of a number (in radians).
use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn tan(self) -> f64
1.0.0
Computes the tangent of a number (in radians).
use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);
fn asin(self) -> f64
1.0.0
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);
fn acos(self) -> f64
1.0.0
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);
fn atan(self) -> f64
1.0.0
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn atan2(self, other: f64) -> f64
1.0.0
Computes the four quadrant arctangent of self
(y
) and other
(x
).
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
use std::f64; let pi = f64::consts::PI; // All angles from horizontal right (+x) // 45 deg counter-clockwise let x1 = 3.0_f64; let y1 = -3.0_f64; // 135 deg clockwise let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);
fn sin_cos(self) -> (f64, f64)
1.0.0
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
.
use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);
fn exp_m1(self) -> f64
1.0.0
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero.
let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);
fn ln_1p(self) -> f64
1.0.0
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately.
use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn sinh(self) -> f64
1.0.0
Hyperbolic sine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);
fn cosh(self) -> f64
1.0.0
Hyperbolic cosine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);
fn tanh(self) -> f64
1.0.0
Hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);
fn asinh(self) -> f64
1.0.0
Inverse hyperbolic sine function.
let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
fn acosh(self) -> f64
1.0.0
Inverse hyperbolic cosine function.
let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
fn atanh(self) -> f64
1.0.0
Inverse hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10);
Trait Implementations
impl Encodable for LogProb
impl Decodable for LogProb
impl Debug for LogProb
impl Clone for LogProb
fn clone(&self) -> LogProb
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl Copy for LogProb
impl PartialOrd for LogProb
fn partial_cmp(&self, __arg_0: &LogProb) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, __arg_0: &LogProb) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, __arg_0: &LogProb) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn gt(&self, __arg_0: &LogProb) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
fn ge(&self, __arg_0: &LogProb) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl PartialEq for LogProb
fn eq(&self, __arg_0: &LogProb) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, __arg_0: &LogProb) -> bool
This method tests for !=
.
impl From<f64> for LogProb
impl Deref for LogProb
type Target = f64
The resulting type after dereferencing
fn deref(&self) -> &Self::Target
The method called to dereference a value
impl Add<LogProb> for LogProb
type Output = LogProb
The resulting type after applying the +
operator
fn add(self, rhs: Self) -> LogProb
The method for the +
operator
impl<'a> Add<&'a LogProb> for &'a LogProb
type Output = LogProb
The resulting type after applying the +
operator
fn add(self, rhs: Self) -> LogProb
The method for the +
operator
impl<'a> Add<&'a LogProb> for LogProb
type Output = LogProb
The resulting type after applying the +
operator
fn add(self, rhs: &'a LogProb) -> LogProb
The method for the +
operator
impl<'a> Add<LogProb> for &'a LogProb
type Output = LogProb
The resulting type after applying the +
operator
fn add(self, rhs: LogProb) -> LogProb
The method for the +
operator
impl Sub<LogProb> for LogProb
type Output = LogProb
The resulting type after applying the -
operator
fn sub(self, rhs: Self) -> LogProb
The method for the -
operator
impl<'a> Sub<&'a LogProb> for &'a LogProb
type Output = LogProb
The resulting type after applying the -
operator
fn sub(self, rhs: Self) -> LogProb
The method for the -
operator
impl<'a> Sub<&'a LogProb> for LogProb
type Output = LogProb
The resulting type after applying the -
operator
fn sub(self, rhs: &'a LogProb) -> LogProb
The method for the -
operator
impl<'a> Sub<LogProb> for &'a LogProb
type Output = LogProb
The resulting type after applying the -
operator
fn sub(self, rhs: LogProb) -> LogProb
The method for the -
operator