Struct nalgebra::Mat3
[−]
[src]
pub struct Mat3<N> {
pub m11: N,
pub m21: N,
pub m31: N,
pub m12: N,
pub m22: N,
pub m32: N,
pub m13: N,
pub m23: N,
pub m33: N,
}Square matrix of dimension 3.
Fields
m11: N
m21: N
m31: N
m12: N
m22: N
m32: N
m13: N
m23: N
m33: N
Methods
impl<N> Mat3<N>[src]
impl<N: Copy> Mat3<N>[src]
unsafe fn at_fast(&self, (i, j): (usize, usize)) -> N
unsafe fn set_fast(&mut self, (i, j): (usize, usize), val: N)
Trait Implementations
impl<N: Copy> Copy for Mat3<N>[src]
impl<N: Debug> Debug for Mat3<N>[src]
impl<N: Hash> Hash for Mat3<N>[src]
fn hash<__HN: Hasher>(&self, __arg_0: &mut __HN)
Feeds this value into the state given, updating the hasher as necessary.
fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher1.3.0
Feeds a slice of this type into the state provided.
impl<N: Clone> Clone for Mat3<N>[src]
fn clone(&self) -> Mat3<N>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)1.0.0
Performs copy-assignment from source. Read more
impl<N: Decodable> Decodable for Mat3<N>[src]
impl<N: Encodable> Encodable for Mat3<N>[src]
impl<N: PartialEq> PartialEq for Mat3<N>[src]
fn eq(&self, __arg_0: &Mat3<N>) -> bool
This method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, __arg_0: &Mat3<N>) -> bool
This method tests for !=.
impl<N: Eq> Eq for Mat3<N>[src]
impl<N: Zero + One> Eye for Mat3<N>[src]
fn new_identity(dim: usize) -> Mat3<N>
Return the identity matrix of specified dimension
impl<N: Copy> Repeat<N> for Mat3<N>[src]
impl<N> AsRef<[[N; 3]; 3]> for Mat3<N>[src]
impl<N> AsMut<[[N; 3]; 3]> for Mat3<N>[src]
impl<'a, N> From<&'a [[N; 3]; 3]> for &'a Mat3<N>[src]
impl<'a, N> From<&'a mut [[N; 3]; 3]> for &'a mut Mat3<N>[src]
impl<Nin: Copy, Nout: Copy + Cast<Nin>> Cast<Mat3<Nin>> for Mat3<Nout>[src]
impl<N: Add<N, Output=N>> Add<Mat3<N>> for Mat3<N>[src]
type Output = Mat3<N>
The resulting type after applying the + operator
fn add(self, right: Mat3<N>) -> Mat3<N>
The method for the + operator
impl<N: Sub<N, Output=N>> Sub<Mat3<N>> for Mat3<N>[src]
type Output = Mat3<N>
The resulting type after applying the - operator
fn sub(self, right: Mat3<N>) -> Mat3<N>
The method for the - operator
impl<N: Copy + Add<N, Output=N>> Add<N> for Mat3<N>[src]
type Output = Mat3<N>
The resulting type after applying the + operator
fn add(self, right: N) -> Mat3<N>
The method for the + operator
impl<N: Copy + Sub<N, Output=N>> Sub<N> for Mat3<N>[src]
type Output = Mat3<N>
The resulting type after applying the - operator
fn sub(self, right: N) -> Mat3<N>
The method for the - operator
impl<N: Copy + Mul<N, Output=N>> Mul<N> for Mat3<N>[src]
type Output = Mat3<N>
The resulting type after applying the * operator
fn mul(self, right: N) -> Mat3<N>
The method for the * operator
impl<N: Copy + Div<N, Output=N>> Div<N> for Mat3<N>[src]
type Output = Mat3<N>
The resulting type after applying the / operator
fn div(self, right: N) -> Mat3<N>
The method for the / operator
impl<N: Absolute<N>> Absolute<Mat3<N>> for Mat3<N>[src]
fn abs(m: &Mat3<N>) -> Mat3<N>
Computes some absolute value of this object. Typically, this will make all component of a matrix or vector positive. Read more
impl<N: Zero> Zero for Mat3<N>[src]
fn zero() -> Mat3<N>
Returns the additive identity element of Self, 0. Read more
fn is_zero(&self) -> bool
Returns true if self is equal to the additive identity.
impl<N: Copy + BaseNum> One for Mat3<N>[src]
impl<N> Iterable<N> for Mat3<N>[src]
impl<N> IterableMut<N> for Mat3<N>[src]
impl<N> Dim for Mat3<N>[src]
impl<N> Shape<(usize, usize)> for Mat3<N>[src]
impl<N: Copy> Indexable<(usize, usize), N> for Mat3<N>[src]
fn swap(&mut self, (i1, j1): (usize, usize), (i2, j2): (usize, usize))
Swaps the i-th element of self with its j-th element.
unsafe fn unsafe_at(&self, (i, j): (usize, usize)) -> N
Reads the i-th element of self. Read more
unsafe fn unsafe_set(&mut self, (i, j): (usize, usize), val: N)
Writes to the i-th element of self. Read more
impl<N> Index<(usize, usize)> for Mat3<N>[src]
type Output = N
The returned type after indexing
fn index(&self, (i, j): (usize, usize)) -> &N
The method for the indexing (Foo[Bar]) operation
impl<N> IndexMut<(usize, usize)> for Mat3<N>[src]
fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut N
The method for the indexing (Foo[Bar]) operation
impl<N: Copy> Transpose for Mat3<N>[src]
fn transpose(&self) -> Mat3<N>
Computes the transpose of a matrix.
fn transpose_mut(&mut self)
In-place version of transposed.
impl<N: ApproxEq<N>> ApproxEq<N> for Mat3<N>[src]
fn approx_epsilon(_: Option<Mat3<N>>) -> N
Default epsilon for approximation.
fn approx_ulps(_: Option<Mat3<N>>) -> u32
Default ULPs for approximation.
fn approx_eq_eps(&self, other: &Mat3<N>, epsilon: &N) -> bool
Tests approximate equality using a custom epsilon.
fn approx_eq_ulps(&self, other: &Mat3<N>, ulps: u32) -> bool
Tests approximate equality using units in the last place (ULPs)
fn approx_eq(&self, other: &Self) -> bool
Tests approximate equality.
impl<N: Clone + Copy + Zero> ColSlice<DVec3<N>> for Mat3<N>[src]
fn col_slice(&self, cid: usize, rstart: usize, rend: usize) -> DVec3<N>
Returns a view to a slice of a column of a matrix.
impl<N: Clone + Copy + Zero> RowSlice<DVec3<N>> for Mat3<N>[src]
fn row_slice(&self, rid: usize, cstart: usize, cend: usize) -> DVec3<N>
Returns a view to a slice of a row of a matrix.
impl<N: Copy + Zero> Diag<Vec3<N>> for Mat3<N>[src]
fn from_diag(diag: &Vec3<N>) -> Mat3<N>
Creates a new matrix with the given diagonal.
fn diag(&self) -> Vec3<N>
The diagonal of this matrix.
impl<N: BaseNum + Copy> ToHomogeneous<Mat4<N>> for Mat3<N>[src]
fn to_homogeneous(&self) -> Mat4<N>
Gets the homogeneous coordinates form of this object.
impl<N: BaseNum + Copy> FromHomogeneous<Mat4<N>> for Mat3<N>[src]
impl<N> EigenQR<N, Vec3<N>> for Mat3<N> where N: BaseFloat + ApproxEq<N> + Clone[src]
fn eigen_qr(&self, eps: &N, niter: usize) -> (Mat3<N>, Vec3<N>)
Computes the eigenvectors and eigenvalues of this matrix.
impl<N: Rand> Rand for Mat3<N>[src]
fn rand<R: Rng>(rng: &mut R) -> Mat3<N>
Generates a random instance of this type using the specified source of randomness. Read more
impl<N: BaseNum + Neg<Output=N> + ApproxEq<N>> Inv for Mat3<N>[src]
fn inv(&self) -> Option<Mat3<N>>
Returns the inverse of m.
fn inv_mut(&mut self) -> bool
In-place version of inverse.
impl<N: BaseNum> Det<N> for Mat3<N>[src]
fn det(&self) -> N
Returns the determinant of m.
impl<N: Copy> Row<Vec3<N>> for Mat3<N>[src]
fn nrows(&self) -> usize
The number of column of self.
fn row(&self, i: usize) -> Vec3<N>
Reads the i-th row of self.
fn set_row(&mut self, i: usize, r: Vec3<N>)
Writes the i-th row of self.
impl<N: Copy> Col<Vec3<N>> for Mat3<N>[src]
fn ncols(&self) -> usize
The number of column of this matrix or vector.
fn col(&self, i: usize) -> Vec3<N>
Reads the i-th column of self.
fn set_col(&mut self, i: usize, r: Vec3<N>)
Writes the i-th column of self.
impl<N: Copy + Mul<N, Output=N> + Add<N, Output=N>> Mul<Mat3<N>> for Mat3<N>[src]
type Output = Mat3<N>
The resulting type after applying the * operator
fn mul(self, right: Mat3<N>) -> Mat3<N>
The method for the * operator
impl<N: Copy + Mul<N, Output=N> + Add<N, Output=N>> Mul<Vec3<N>> for Mat3<N>[src]
type Output = Vec3<N>
The resulting type after applying the * operator
fn mul(self, right: Vec3<N>) -> Vec3<N>
The method for the * operator